16 research outputs found

    A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection

    Get PDF
    Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis

    The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities.</p> <p>Results</p> <p>Genes encoding truncated nucleocapsid (N) and spike (S) proteins of <it>SARSCoV </it>were cloned into the expression vector <it>pQE30 </it>and fusionally expressed in <it>Escherichia coli </it>M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses <it>HCoV </it>229E and <it>HCoV </it>OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with <it>SARSCoV </it>at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to <it>SRASCoV </it>appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit <it>SARSCoV</it>. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with <it>SARSCoV </it>at day 33 post injection were completely protected from virus replication.</p> <p>Conclusion</p> <p>The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate.</p

    High circulating CD39+ regulatory T cells predict poor survival for sepsis patients

    Get PDF
    SummaryBackgroundSepsis encompasses two phases, the ‘hyper’-reactive phase and the ‘hypo’-reactive phase. The initial inflammatory stage is quickly counterbalanced by an anti-inflammatory response, which compromises the immune system, leading to immune suppression. Regulatory T cells (Tregs) have been implicated in the pathogenesis of sepsis by inducing immunosuppression; however, the role of CD39+ Tregs in the process of sepsis is uncertain. This study investigated the dynamic levels of CD39+ Tregs and their phenotypic change in sepsis.MethodsFourteen patients with systemic inflammatory response syndrome (SIRS), 42 patients with sepsis, and 14 healthy controls were enrolled. Sequential blood samples were used to analyze the numbers of CD39+ Tregs and their phenotypic changes. Survival at 28 days was used to evaluate the capacity of CD39+ Treg levels to predict mortality in sepsis patients.ResultsSepsis patients displayed a high percentage (3.13%, 1.46%, and 0.35%, respectively) and mean fluorescence intensity (MFI) (59.65, 29.7, and 24.3, respectively) of CD39+ Tregs compared with SIRS patients and healthy subjects. High-level expression of CD39+ Tregs was correlated with the severity of sepsis, which was reflected by the sepsis-related organ failure assessment score (r=0.322 and r=0.31, respectively). In addition, the expression of CD39+ Tregs was associated with survival of sepsis patients (p<0.01). By receiver-operating characteristic (ROC) curve analysis, the percentage and MFI of CD39+ Tregs showed similar sensitivities and specificities to predict mortality (74.2% and 85.1%, and 73.9% and 84.1%, respectively). Using Kaplan–Meier curves to assess the impact of CD39+ Tregs percentage and MFI on overall survival, we found that a high CD39+ Tregs percentage (p<0.001; >4.1%) and MFI (p<0.001; >49.2) were significantly associated with mortality. Phenotypically, CD39+ Tregs from sepsis patients showed high expression of CD38 and PD-1 (p<0.01 and p<0.01 respectively).ConclusionsIncreased expression of CD39+ Tregs was associated with a poor prognosis for sepsis patients, which suggests that CD39+ Treg levels could be used as a biomarker to predict the outcome of sepsis patients

    Spasticity assessment based on the Hilbert–Huang transform marginal spectrum entropy and the root mean square of surface electromyography signals: a preliminary study

    No full text
    Abstract Background Most of the objective and quantitative methods proposed for spasticity measurement are not suitable for clinical application, and methods for surface electromyography (sEMG) signal processing are mainly limited to the time-domain. This study aims to quantify muscle activity in the time–frequency domain, and develop a practical clinical method for the objective and reliable evaluation of the spasticity based on the Hilbert–Huang transform marginal spectrum entropy (HMSEN) and the root mean square (RMS) of sEMG signals. Methods Twenty-six stroke patients with elbow flexor spasticity participated in the study. The subjects were tested at sitting position with the upper limb stretched towards the ground. The HMSEN of the sEMG signals obtained from the biceps brachii was employed to facilitate the stretch reflex onset (SRO) detection. Then, the difference between the RMS of a fixed-length sEMG signal obtained after the SRO and the RMS of a baseline sEMG signal, denoted as the RMS difference (RMSD), was employed to evaluate the spasticity level. The relations between Modified Ashworth Scale (MAS) scores and RMSD were investigated by Ordinal Logistic Regression (OLR). Goodness-of-fit of the OLR was obtained with Hosmer–Lemeshow test. Results The HMSEN based method can precisely detect the SRO, and the RMSD scores and the MAS scores were fairly well related (test: χ2 = 8.8060, p = 0.2669; retest: χ2 = 1.9094, p = 0.9647). The prediction accuracies were 85% (test) and 77% (retest) when using RMSD for predicting MAS scores. In addition, the test–retest reliability was high, with an interclass correlation coefficient of 0.914 and a standard error of measurement of 1.137. Bland–Altman plots also indicated a small bias. Conclusions The proposed method is manually operated and easy to use, and the HMSEN based method is robust in detecting SRO in clinical settings. Hence, the method is applicable to clinical practice. The RMSD can assess spasticity in a quantitative way and provide greater resolution of spasticity levels compared to the MAS in clinical settings. These results demonstrate that the proposed method could be clinically more useful for the accurate and reliable assessment of spasticity and may be an alternative clinical measure to the MAS

    Correction to: Spasticity assessment based on the Hilbert–Huang transform marginal spectrum entropy and the root mean square of surface electromyography signals: a preliminary study

    No full text
    After the publication of the original article work [1], it was highlighted that the circuit information and the A/D converter used for acquiring sEMG signal were not correctly reported in the Methods section. The circuit included a 10 Hz high-pass filter instead of 10 Hz notch filter as stated in the original article. The A/D converter was ADS7818, instead of ADS1198 as stated in the original paper. The authors apologize to the readers for the inconvenience

    A Retrospective Study on Risk Factors for Urinary Tract Infection in Patients with Intracranial Cerebral Hemorrhage

    No full text
    Objective. This study aimed to explore the risk factors of urinary tract infection (UTI) in patients with intracranial cerebral hemorrhage (ICH). Design. This is a retrospective study, and a total of 77 patients with ICH consecutively admitted to the First Affiliated Hospital of USTC (Anhui Provincial Hospital, Hefei, China) during the period of August 2015 to August 2017 were included. The patients were divided into an UTI group (24 cases) and a non-UTI group (53 cases); patients with UTI were diagnosed according to clinical manifestations, recent urinary routines, and urine culture results. The following information in these two groups was recorded: age, sex, course of disease, side of paralysis, location and type of cerebral hemorrhage, disturbance of consciousness or not, the Brunnstrom stage of paralysed lower limbs, number of basic diseases, whether there were complications (tracheotomy, retention catheterization, pulmonary infection, pressure sore, deep venous thrombosis, etc.), whether rehabilitation interventions were conducted, blood routine, biochemistry index, DIC complete set, urine routine, and urine culture data. Univariate analysis and multivariate logistic regression analysis were used to examine the risk factors of UTI in patients with ICH. Results. Univariate analysis showed that age, side of paralysis, disturbance of consciousness, the Brunnstrom stage of lower limbs, tracheotomies, retention catheterization, pulmonary infection, leukocyte count, neutrophil proportion, sodium, uric acid, D-dimer, and fibrinogen may be related to UTI in patients with ICH (P<0.05). Regression analysis showed that age (OR (95% CI) = 1.207 (1.022–1.424), P=0.026), right-sided paralysis (OR (95% CI) = 0.20 (0.001–0.650), P=0.028), and D-dimer (OR (95% CI) = 1.403 (1.003–1.961), P=0.048) were associated with UTI in ICH patients. Conclusions. Increased age and high D-dimer are independent risk factors for UTI in patients with ICH, while right-sided paralysis is a protective factor for UTI in patients with ICH
    corecore